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EXECUTIVE SUMMARY

A three-dimensional model for a stress analysis of woven fabric composites, which was
derived previously based on Reissner’s mixed variational principle, was solved numerically with
afinite element approach. Since the mixed model calculates the stress field by taking variations
of displacement and stresses independently and satisfying equilibrium of stresses pointwise,
accurate interlaminar stresses are predicted at the yarn interface. The interfacial continuity
conditions are implemented through a penalty method by adding an additional variational energy
of two constraint conditions: the displacements must be continuous along the interface between
two stacked subregions, and interfacial normal and shear stresses must be in equilibrium at the
interface.

After performing the thickness integration, the three-dimensional variational energy
equation is evaluated for each yarn (subregion) two-dimensionally with 16 stress-related and 13
displacement-related unknown variables. Using the Rayleigh-Ritz approximation yields a
system of linear equations by taking derivatives of the variational energy equation with respect to
the independent unknown variables. The present mixed method is applied to the analysis of both
flat and woven laminated composites. The displacement and stress results of the present method
are compared and validated with the conventional displacement-based finite element solutions
and/or the existing analytic solution.

The present model is also applied to the analysis of stiffness and strength of flat and
woven fabric composites. The model calculates three-dimensional effective elastic moduli and
predicts failure strengths and damage modes. The failure analysis includes residual stress

calculation to consider the hygrothermal effect. The numerical calculations show good



agreement with existing experimental and numerical results on both flat and woven laminated
composites with various yarn-waviness ratios.

The emerging ultra-lightweight material, carbon foam, was modeled with the three-
dimensional microstructures to develop a basic understanding of the performance of open-cell
foam materials. The model can describe the deformation behavior accurately and will be used to
investigate the failure mechanism of the cell ligaments.

Because of the randomness and complexity of the microstructure of the carbon foam, the
representative cell ligaments are first characterized in detail at the microstructural level. The
microstructural characterization will then be correlated with the macroscopic bulk properties by a
statistical approach. A series of databases will be collected for various size and spatial
orientation of the cell ligaments, as well as the property variation due to the graphic alignment
along the longitudinal direction of the ligaments.

Because of denderness, each ligament can be considered as a beam, and the tetrahedral
cell microstructure with four ligaments as a frame structure. The four beams are located in three-
dimensional space under arbitrary loading conditions. The cross section of the beam variesin
size and material properties in the longitudinal direction along the ligament.

Based on the literature review, the research approach of modeling the carbon foam
blowing process was developed. The model consists of three concepts: (1) nucleation of
microcellular that determines the relationship of the cell number, gas kind, temperature and
pressure, (2) bubble growth that calculates bubble dynamic size and shape so the relationship of
the process parameters and foam properties can be determined, and (3) mold filling that

simulates the process of the foam filling a mold cavity. A finite element code is being developed.



1. THREE-DIMENSIONAL MODELING OF WOVEN COMPOSITES

11 INTRODUCTION

To achieve the optimum structural properties of state-of-the-art fabric reinforcements of
woven composites, there is a need to develop a basic understanding of deformation and damage
mechanisms. A mode for three-dimensional stress analysis of woven fabric composites has
been proposed by Roy [1] to obtain reliable three-dimensional stress fields, especialy
interlaminar stresses along interfaces between yarns. The model is formulated based on
Reissner’s mixed variational principle to take independent variations on the stress and the
displacement components [2-4]. The in-plane stresses within a yarn are assumed to vary linearly
in the thickness direction, and the expressions for the interlaminar stresses are obtained by
satisfying the three-dimensional equilibrium equations. After performing the thickness
integration, the three-dimensional variational energy equation becomes a two-dimensional
equation. The variational equation is expressed with 16 stress-related and 13 displacement-
related unknown variables. In this model, an accurate calculation of the interlaminar stresses at
the yarn (subregion) interface can be achieved (except near the point of singularity) by satisfying
the interfacial traction continuity conditions and the equilibrium of stresses pointwise.

Our present work establishes a mixed finite element analysis (FEA) based on the mixed
variational principle. Tota variationa energy is obtained by accumulating the energy for all
yarn and matrix subregions. The subregions are further discretized into finite elements in a plane
perpendicular to the thickness direction. The interfacial continuity conditions are implemented
through a penalty method by adding an additional variational energy of two constraint
conditions. the displacements must be continuous along the interface between two stacked

subregions, and interfacial normal and shear stresses must be in equilibrium at the interface.



Two large numbers of penalty parameters enforcing the displacement and stress continuity are
employed carefully to avoid numerical errors. The solution of the variational energy equation is
obtained by using the Rayleigh-Ritz approximation with polynomia shape functions.

The present mixed method is applied to analyze aflat laminated composite with a free
edge and a representative volume element (RVE) of plain-weave composites. The displacement
and stress results of the present method are compared with the conventional displacement-based
finite element solutions and/or the existing analytic solutions. The reliable prediction of the
stress field by the present method is used to calculate stiffness and strength of the flat/woven
laminated composites. Three-dimensional effective elastic moduli are calculated for several
flat/woven laminated composites and compared with existing experimental/numerical results.
Meanwhile, a discrete damage analysis is achieved to calculate first-ply and last-ply failure loads
as well astheir damage modes. Failure strengths are predicted by considering not only
mechanical stresses but also residual stresses that are significantly influenced by hygrothermal
effects. The numerical predictions on the failure strength and the damage mode are compared
with experimental results that were previously observed on flat laminated composites and woven

model laminates with one-dimensional yarn crimping.

1.2 FORMULATION OF THREE-DIMENSIONAL MODEL
1.2.1 Modified Variational Energy Equation

The variational energy equation evaluated for a given (k-th) subregion is written

hY _— * —_— * —_ * ~ (k)
J0 = (d(”ﬂ +c;)p, - (FRU+Fu +FV+FVv +FW+Fw + F7w)] dxdy "
Xy

+ C\Iﬂ(psz - h2,x P, - hz,y pez) u, - (p51 - hl,x Py - hl,y pGl) u,

Xy



+ ( 42 = h2,x Pe - hz,y pzz)vz - (p41 - hl,x Pe - hl,y pzl) Vi
+(p32 - hz,x Ps> - h2,y p42) W, - (p31 - h:Lx Ps; - h:Ly p41) Wl](k) dXdy

* (‘)[( o0+ pezu* TP,V pzzv* TP,V p42W* + p43W) (hz B h1 )](k) jz dx
¥ c\)[ Pl + PU” + P,V + PGV + Py W+ p,w + pssw)(hz } hl)(k) :2 dy
Y 1
) é[(rxzuz v, +f22W2)' (fxlul +E,v, 0w, )](k) dA = 0
A

where my and ¢

are defined in Roy [1].

The interfacial continuity condition dictates that the displacements must be
continuous along the interface between two stacked subregions (k-th and I-th subregions), and

interfacial normal and shear stresses must be in equilibrium, as Figure 1 shows.

Displacement
Subregion (1) {u? vy w"}

Subregion (1) Stress

{sy.s.s5)
Interface |:>
i Stress
Subregion (k) {8 81 Wy
3 1~4 15 ‘

] Displacement
Subregion (k I
=99 {ug” vy Wi}

Figure 1. Displacement and Stress Continuity at the Interface between k-th and I-th Subregions.

By setting the interfacial normal stressas s', and interfacial shear stressesas s°, and s',, the

interfacial continuity condition provides the following constraint conditions:
(1) Displacement continuity:
u® - u =0
Vo - 0 =0 @



(2) Normal and shear stress continuity:

A

S

0,

(
3

)

o O

$0 -

©)

(
4

n,

SW -8 =0
where S and S aretheinterfacial stress components at the k-th and I-th subregions,
respectively. Note that the interfacial stresses are evaluated in alocal coordinate system whose

planar coordinates are paralel to the interfacial surfaces. These local stress components along

the interfacial surfaces are related with stress components in the global coordinates by the dopes
of the interfacial surfacesin x- and y-directions (h{) and h{)). Stresstransformation using the

direction cosines of the interfacial surface vectors yields the following stress constraint equations
in the global coordinate system:

S9-80=0 b s{-sP-hi AL -s)- Xl -5 1) =0

$.7-8=0 b s-s)-hixs"-s.)- X" -s)=0 (@

S9-S5 =0 b s¥-sP-hUxsY-s)- ) Xsg” -s{7)=0

To impose the constraint conditions for displacement and stress continuity, one

can substitute them into equation (1) directly to formulate an irreducible form. Itis
straightforward to substitute the displacement continuity. However, it turns out that substituting
the stress continuity requires an extremely involved algebraic manipulation. Moreover, when
obtaining numerical solutions by using polynomial shape functions, the restriction of excessive
continuity for stresses should be avoided at singularities and/or at abrupt changes in material
properties. The imposition of such continuity would likely produce erroneous and usually highly

oscillating results [5].



Instead of using the irreducible form, a penalty approach is employed by adding a
new energy term ( J,) for the constraint conditions, with penalty parameters (a, and a,), which

yields the following modified variational energy equation:

& 1,8 100
J=gJ”+a . (5)
where

1 N\
3 = 2om gl - U+ (4 - Y (ol - )y
Xy

(6)
+2a opllss - S0y 1 - 8Py 1 - 0oy

and M is the number of subregions in the thickness (z) direction. Two large numbers of a, and
a, enforce the displacement and stress continuity, respectively. However, a, must be selected
carefully to avoid the excessive continuity for stresses. Because of the nature of the mixed
formulation for the stress and the displacements, erroneous results in stress may ruin the onesin
displacement, and vice versa. The effect of the penalty parameters will be discussed later.

Because of the complexity of the modified variational equation, it is more
desirable to obtain the solution numerically rather than analytically. Using the Rayleigh-Ritz
approximation can yield a system of linear equations that is solvable numerically. There are two
possible approaches, finite element or finite difference, which can be taken to solve the system of
equations numerically, and the former is taken in this study.

Because of the through-the-thickness (z) integration during formulation, the

modified mixed variational equation, equation (5), is only afunction of x and y, and so are the

29*Ns unknown variables (C*(x,y), i =1,---, 29) for the k-th subregion, where Nsis the



number of subregions. Among 29 unknown variables for each subregion, 16 are for the stress
components, and 13 are for the displacement components, as in equation (8). The variationa
equation is then discretized in x- and y-directions for the finite element formulation. The

unknown variables are collected in a vector, as follows:

k 1O
kPMWFMmg ©

where

(kT

P ={Pu1, P2 Pors Poas Pats Pszs Pags Pass Pazs Paos Pags Psrs Poas Pogs Pors Peo)
and (8)

A
)

d® :{U, u,u, U, V,V,V,V,, W,W, W, w, WZ}(k)T
Each of the unknown variables, C™(x,y), are then interpolated with their nodal

contribution, C™

!

by shape functions, as follows:

Nen
P y)=a pi Ny (xy)

=1

)

Nen

d®(x,y) =g di =Ny (xy)

=1
where Nen is the number of nodal pointsin an element, and N, and N, are the shape functions
for the stress and displacement degrees of freedom, respectively. The shape functions can be
chosen as the linear polynomial for 4-node quadrilateral elements (N, =4), quadratic
polynomial for 8-node serendipity elements ( N, =8), etc.

The nodal values of the unknown variables for each finite element are collected in

avector, as follows;



C(k)(X,Y) :{Ci(jk)} z{pl’dli p21d21 "'1pj ) dj 17T pNenadNen}(k)T (10)
where
pj :{pll’ p12’ p21’ pzz’ p31’ p32’ p33’ p34’ p41’ p42’ p43’ p51' p52’ p53’ pel' pez}Tj
and (11)
— * — * — A T
d, ={u,u U, Uy, V, Vo, v, Y, W, W ,w,wl,wz}j
The Rayleigh-Ritz approximation yields a system of linear equations by taking

derivatives of the variational energy equation with respect to the independent unknown variables,

as follows:
ﬂJ(k)
—=0 (12)
‘ITCiﬁk)
The system of equationsis then expressed in the matrix form, as follows:
eA o 1 pU(k) _ifs i 13
g:T oY ldé _1f£\; (13)
| 112
with
A= C‘)N; SN, dU
0
C=0ON,; BN, dU
v (14)

where S, B, N, and N, are matrices for the compliance, relationship between the stresses and

displacements, and the shape functions for the stress and displacement degree of freedoms,

respectively.



The equations for the constraint conditions at the interface are also obtained by

B2 0 an B
ﬂcigk) ﬂCi(jl)

which yields another matrix form, as follows:

éQp 0 'Qp 0 l:lip(k)l.,.l

50 Q0 -Quuid®}
8Q. 0 Q0 GpYf
e U- .
e0 -Q; 0 Qqfd”

with
Qs =, C\)NZ N, du
U

Q.=a, ON; h, N, dU
U

(15)

(16)

(17)

where h | isamatrix containing the slopes of the interfacial surfacesin x- and y-directions asin

equation (4). The global system of equations is then formulated by combining the elemental

stiffness matrix and force vectors in equation (13) and equation (16), and solved numerically to

obtain the displacement and stress results.

1.2.2 Calculation of Effective Elastic Moduli

Effective elastic moduli of the woven composites are calculated by solving six

different cases under uniform axial and shear strain loadings (€ ). The boundary conditions for

each loading case are as follows:

(1) Forg =g =U,/L,,
u©,vy,2=0 , u(L,,y,29=U,

V(x,0,2)=Vv(xL,,2)=0

w(x y, 0) =w(x, y, L,) =0

10

(18)



(2) For g, =€, =V, /L,
u@,y,2)=u(L,,y.2 =0
V(x,0,2=0 , v(xL, 2=V, (19
WX, y,0)=w(x,y, L,) =0

(3) For és :éz :Wo/Lz !
u@©,y,z)=u(L,,y,2=0

V(x0,2) =v(x L,,2) =0 (20)
WX y,00=0 , w(xyL,)=W,

(4) For é4 =gyz :Vo/Lz '
u@©,y,z)=u(L,,y,2=0

v(x,¥,0)=0 , v(xy L,)=V, (21)
W%, y,0) =w(x, y, L,) =0

(5) For és zgxz:UO/Lz’
ux, v,00=0 , u(x,y,L,)=U,

v(x,0,2) =v(x, L,,2)=0 (22)
w(x, y,0) =w(x, y, L,) =0

(6) For g =g,, =U,/L,,

u(x,0,z2=0 , uOL,,2=U,

y )
V(% 0,2) =v(x L,,2) =0 (23)
w(x y,0) =w(x, y,L,) =0

where U _,V, ,W, are the uniformly applied displacement components.

For each uniform-strain boundary condition, effective stresses (S",) are calcul ated

by taking a volumetric average, as follows:

AS . (X, Y, z) dxdydz
S. :Q

, v (i=1-6) (24)

11



Components of 6x6 effective stiffness matrix ([5' j J) and effective compliance matrix ( [§, J. J) are

then obtained by the following equation:

_ — 1 — — 11
{Si}:[cij]{el} and [Slj]:[cij] (25)
where
é_ll C, Cs Cu Cy Cy 3
éCZl C22 C23 C24 Czs Cze U
[—”] —a s C_:sz 833 Sa4 C_:35 C_:se 3 (26)
@C_:M C_:42 C_:43 844 C_:45 C_:46 u
g_:Sl c_:sz c_:ss 854 C_:ss C_:se 3
Lo Co; G Co G Coll

Finally, the three-dimensional effective elastic moduli are calculated by the following:

E =2, E=—, E,=—
11 SZZ S33

=~ 1 = 1 = 1

Gyz :§_, ze ==, ny == (27)
44 S55 66

_ S, -~ S, -~ S

A, = 22, A =8 R 28

1.2.3 Calculation of Residual Stresses
When the laminated composites are cured and cooled to room temperature,
residual stresses will exist because thermal contraction of each ply is anisotropic. When
moisture is subsequently absorbed, hygro expansion is also anisotropic. Therefore, stress
calculation in laminated composites should include both the mechanical and the residual stresses
due to the hygrothermal effect. The variational energy term for the hygrothermal effect [1] is
calculated as follows:

EiJ(k) = Orbel(k) f](')dz (28)



where e ={g . are hygrothermal strain componentsin the global coordinate system. The

hygrothermal strain components (8% ={g}. ) in the on-axis coordinate system are expressed as
g =a,Dlr+bc (29)
which are related with the global ones by the following equation:

e =[T2@)] " [T@)] " {e (30)
where DT isatemperature difference between curing and operating conditions, and c is
moisture content after the curing. The @, is the angle between the principal material direction
and the yarn direction, and g, is the angle between the yarn direction and the global coordinate

direction. The [Tl(ql)] and [T2 (qz)] are tensor transformation matrices for fiber orientation and

yarn-crimping angles, respectively, as follows:

ém; nf 0 0 0 -2mnu
g n; m 0 0 0 2mn 3
€0 O 1 0 O o u
[m.@)]=¢ L,J (31)
e 0 0 0O m n 0 ¢
€o 0O 0 -n m o u
¢ > 24
n, -mn 0 O O m -n;{
and for warp yarns, the following applies:
ém 0 n; O 2mn, OuU
é a
e O 1 0 0 0 0y
wp €02 0 m 0 -2mn, oO0U
@)= m 22T 32)
e 0 0O O m, 0 - N,
g- mn, 0 mn, 0 mi-n2 O 3
g O 0O O n, 0 m,
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or for fill yarns, the following applies:

& 0 0 0 0 ou
g) m2 nn -2mn, 0 O 3
2 2 -
[T, @)]" =§ mr:n _ En :ﬁm"‘ r:]z 8 8 E (33)
EéO 0 0 0 m, n, 3
@ 0 0 0 -n, m{Q

where m, =cos(q,) , n, =9n(q,) , m, =cos(q,) and n, =3n(q,) .
1.2.4 Calculation of Failure Strength
Failure analysis to predict the critical load and the damage mode is achieved by
applying failure criteria to the reliably calculated stress components, not by interpolating the
displacement results as in the displacement-based method. Assuming that all stress components

increase proportionally to the applied loading, the following results:

S_max — RS iapplied (34)

The strength ratio ( R) can be split into mechanical (R™) and residua ( R") parts
on an assumption that each part of the stresses acts independently, so that equation (34) becomes
s™ =R"s™+R's (35)
For a given hygrothermal combination of the cure temperature and the moisture
content, the residual stresses are fixed. When mechanical loads are applied to the laminate, the
maximum load that the laminate can sustain is then given by the mechanical part of the strength

ratio. The mechanical strength ratio can be solved by letting the residual strength ratio equal

unity.

14



1.2.41 Quadratic failure criteria

Quadratic failure criteriain stress space consist of linear and quadratic

invariants as follows:
Fs/@s ™ +Fs™-1=0 (36)

where F; and F are strength parameters in stress space. By letting the residual strength ratio

equal unity, the following equation results:

a"(R")*+((m™+a™)R™+(a" +b" - 1)=0 (37)
where
a"=Fs"s!" , b"=Fs"
a™ =2F ;ss] (38)
a'=Fs/s| , b'=Fs/

J
In this study, the Tsai-Wu failure criterion is used with interaction terms of F., = F;, =- 0.5 [6].

1.2.4.2 Maximum stress failure criteria

To understand the basic damage mechanism during the load increase, it
is important to identify the most critical stress component. To distinguish the most critical stress
component from the others, it is advantageous to use maximum stress failure criteria. Note that
there is no interaction term between the stress components. By considering both the mechanical
and the residual stresses, the failure occurs when one of the following conditions is met:

1) For tensile or compressive stresses (i =1, 2, 3):

X' -s/
if sS"+s'30 , R"=21 21
i i R| Sim
' (39)
. - X~-s8'
if Sim_'_Sir <0 ’ Rim:IS—mSI
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2 For shear stresses(i =4,5,6):

( i ( 40)

where XiT : XiC and S aretensile, compressive and shear strengths, respectively.

13 NUMERICAL RESULTSAND DISCUSSION

The mixed finite element method is implemented into an in-house computer program,
“3Dwoven.” The program is based on a spreadsheet with user-friendly input and output routines.

The present method is applied to the analysis of flat and woven laminated composites.
First, displacements and stresses of these composites are calculated and compared with analytic
and/or conventional displacement-based finite element solutions. Second, three-dimensional
effective elastic moduli are calculated for several flat/woven laminated composites, and
compared with existing experimental/numerical results. Last, first-ply and last-ply failure loads
as well as their damage modes are predicted with the present method. The numerical predictions
on the failure strength and the damage mode are compared with experimenta results that were
previously observed on flat laminated composites and woven model laminates with one-
dimensiona yarn crimping.

1.3.1 Flat Laminated Composites

We solved a class of boundary value problems, known as the free-edge problem,

in which a flat laminate of finite width is subject to a uniform axial displacement (U,). The
origin of coordinates is located at the center of the laminate, and the laminate is symmetric

(a(2) =g(- 2)). Each layer istreated as a transversely isotropic material with alay-up of [0/90]s,
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where 0° is parallel with the x-axis, asin Figure 2. The layers are of equal thickness, h, and the

laminate width is 2b =16h. The materia properties arelisted in Table 1.

z
A
OO
90° ih
< > >y
b=8h

Figure 2. Flat Laminated Composites.

Table 1
Three-Dimensional Properties of Unidirectional T300/N5208 Composite

& & [ E [n [n |n |G| Gl G
[GPe] | [GPd] | [GPa] | ™ * | [GPel | [GPe] | [GPe]
181 | 103 | 103 | 0.28 | 0.28 05 | 717 | 717 | 7.05

The following boundary conditions are applied to simulate a tensile loading
subject to a uniform displacement in the x-direction. The axia displacement in the x-direction at
x=0 (yz-surface) is fixed, and at x=Ly is prescribed with U . The symmetric boundary condition
isenforced at y=0 (xz-surface) by setting v=0. The zero vertical displacement at z=0 simulates a

case in which laminates are symmetrically stacked.

u®@©,y,2=u?@©,y,2=0 , T0,y,2=u*"(0,y,2=0

U
WL,y )= (L D=0, L T v )= ur (L, y )=

(41)
v9(x,0,2) =vi?(x,0,2=0 , Vv¥(x0,2) =v*¥ (x0,2=0

w (x, y,0) =0
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The penalty parametersin equation (6) are chosen as a, =10° and a, =10° to
avoid numerical instability. Two different meshes are generated for the present mixed method:
having the same number of divisions in the y-axis, one has only one sublayer, and the other has
three sublayers in each ply (subregion) in the z-axis. The number of divisions and mesh are
shownin Figure 3 (@) and (b).

Stress and displacement results are compared with the analytic and the
displacement-based finite element solutions. The analytic solutions are obtained by a two-
dimensional mixed analysis with 18 sublayers suggested by Pagano [3]. For the displacement-
based finite element method, three-dimensional eight-node brick elements are used with two
different meshes; one has two divisions and the other has 10 divisions in the z-direction in each
subregion, asin Figure 3 (¢) and (d). The interfacial stresses are calculated by interpolating the
elemental stresses at the Gaussian integration points into the nodal points along the interface.
Thus, two normal and shear stresses are calculated by interpolating those of the upper and the
lower elements at the interface.

Figure 4 shows the results of the present method (mixed) compared with the

analytic and FEM solutions. The results show that the normal and shear stresses become singular

at the free-edge ('y = L, ) because of the discontinuity in the elastic properties. The present and

analytic methods, which are both the mixed methods, yield nearly identical results for the
transverse displacement at the top surface [Figure 4 (a)], the normal stress aong the [0/90]
interface [Figure 4 (b)], and the normal stress along the central surface [Figure 4 (d)], whereas the
displacement-based FEM shows little difference with them. The FEM does not yield an accurate
solution without a sufficient number of sublayers in the z-direction, whereas the present method

shows an excellent agreement even with one layer except at aregion close to the free edge.
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(b) Mixed (N, =4, N, =24, N, =3).

(@ Mixed (N, =6, N, =24, N, =1).

/]

/

i

)/

20, N, =10).

y

(d) FEM (N, =1, N

(c)FEM (N, =2, N, =20, N, =2).

Geometry and Number of Divsions for Present Mixed and Displacement-Based Finite Element

Methods.

Figure 3.
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(b) Distribution of s, aong [0/90] interface (z = h)

Figure 4. Stress and Displacement Results for Flat Laminated Composites.
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Figure 4. Stress and Displacement Results for Flat Laminated Composites (concluded).
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While the analytic solution yields zero shear stress with a high peak at the free

edge (y =L, ), the present and FEM solutions give finite values, as Figure 4 (c) shows. Thisis

because the linear shape functions used in both finite element methods are not accurate enough
to capture the drastic stress change at the free edge. Although the increment of the sublayer in
the present mixed method makes the peak value higher, it creates wiggles in the shear-stress
distribution near the free edge. This is because the high stress gradient at the free edge
influences the stress field inside the edge. As pointed out earlier, the excessive continuity for
stresses should be avoided at singularities and at abrupt material property change interfaces.
Therefore, the penalty method is more suitable than the irreducible formulation because it can
relieve the excessiveness by controlling the penalty parameter for the stress constraint condition
(a,). Notethat in this case of such an extremely high stress gradient, even the penalty method
cannot cure the problem completely.

The normal stress at the central surface [Figure 4 (d)] with one sublayer shows
good agreement with the analytic solution except for a hump at the free edge. This hump does
not appear with three sublayer solutions.

1.3.2 RVE of Woven Fabric Composites
The RVE of the moddl is divided into several subregions; each subregion is

occupied by a characteristic fabric yarn or amatrix (see Figure 5). Thel, and L variables
represent the length of RVE in the x- (warp) and y- (fill) directions, and t,, and t, half of the

thickness of the warp and fill yarn, respectively. The yarn is assumed as transversely isotropic,
and the matrix as isotropic materials. Each yarn and the matrix subregion of the RVE are

discretized into severa finite elements in the longitudinal and transverse directions. The N, and



Figure 5. Representative Volume Element of a Plain-Weave Composite. Numbers in circles indicate the
numbers of subregions.

N, variables represent the numbers of subdivisions in haf of the length of RVE in the x- and the
y- directions (L, /2 and L, /2), respectively.

The cross-sectional boundary of the yarn is confined by h, = h, (lower boundary)
and h, =h, (upper boundary). Because of yarn waviness and the elliptical cross-sectional

boundary of theyarns, h, and h, arefunctionsof both x and y. Yarn waviness at each

subregion is assumed to be sinusoidal functions. Lower and upper surface coordinates of the

yarn subregions are as follows:

=t (- oo™+t (1 0oy | =t (1 cosP) #, (14 cosP

X y X y
h :tf(l+cos%)+tw(1— cos®y | h® =t, (- cosi—x)ﬂw(l— cos?Y.
X y X
(42)
h =t, (1 cosPy+t, 1+ cos™) | P =t, 1+ c0s) +t, (14 cosY)
L, L, L, L,

n =t @roost) 41, 1roosy Y =t @ eos 4,1 costh

X y X y

23



where a superscript indicates the subregion number. Lower and upper surface coordinates of the
bottom and top matrix subregions are as follows:

(1) for bottom matrix subregion (subregion 5),
h® =0, and

Itf(l cosL—)+t - cos ) for OExX£L,/2,0£y£EL, /2
I X
i X
it (1+cosL—)+tW(1- cosL—) for L,/2EXEL, ,0£YyEL, /2
ho =1 ' ’ (43)
't - cosli&)ﬂ 1+ cos ) for 0EXEL,/2,L /2EyEL,
I X
I y
}tf(l+cosf—)+tw(1+cosl_—) for L,/2ExEL,,L,/2EYEL,
|

X y

(2) for top matrix subregion (subregion 6),

b, (L cosliﬂ)+tw(l+ cos%) for 0EXEL,/2,0£yEL, /2
'r ) ]
'r
it (1- cos%)+tw(l+cos%) for L,/2ExEL, ,0£ yEL,/2
h(6) X y
't (1+cos—)+t - cosL—) for OExE£L,/2,L, /2EYyEL, (44)
- X y
|
t (1- cos—)+t (1- cos > ) for L/2ExEL,, L, /2EYEL,

| x

ad h® =21, +t).

The following boundary conditions are prescribed to simulate atensile loading
subject to a uniform displacement in the x-direction with lateral constraint in the y-direction. The
zero vertical displacement at z=0 simulates a case in which two RVES are symmetrically

stacked, as shown in the following equation:

24



u©,y,2=u?©0,y,2=0 , t“(,y,2=u*“(0,y,2)=0

u(L, y, 2 =u(L,, v, 2)=U, , a®(L,y.2=u*®(L,,y,2)= Uzo

vi9(x,0,2) =v{? (x,0,2) =v{“(x,L,,2) =v{’(x, L,,2) =0 (45)
vi(x 0,2 =v*" (x,0,2) =v¥(x, L,, 2) =v*® (x, L,,2) =0
w (X, y,0) =0

Figure 6 (a) shows a deformed shape under the above boundary conditions. The

top surface of the RVE is twisted because of its antisymmetric geometry in the x- and y-

directions. Figure 6 (b) shows the antisymmetric distributions of the vertical displacement at the
intersection of the top surface and the xz-planesat y =0 and y =L, .

The thickness of the matrix subregions (subregions 5 and 6) at four corner points
is zero according to the model. Physically, the lower (w;,) and upper (w, ) vertical
displacements at these corners should be the same. However, because of the numerical errors,
they do not match with each other with the coarse meshes ( N, < 3), asin Figure 6 (c).
Therefore, finer meshes (N, 2 4) should be used to achieve the interfacial continuity, and
N, =6 ischosen in this study.

While one displacement penalty parameter is set as a, = 10°, two stress penalty
parameters are chosen as a, =10° and a, =0 for a sensitivity study. The latter case (a, =0)
means no stress constraint condition is enforced. Figure 6 (d) shows that the vertical
displacement distributions are almost identical with two different a,, which indicates that the

stress continuity condition has a negligible influence on the displacement results.
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Figure 6. Displacement Results of RVE of Woven Composites.

Figure 7 shows the normal and shear stress distributions along an interfacial line
in Figure 5. These interfacia stresses are the local ones described in equation (4), which are
transformed from the stress components in the global coordinate system by the slopes of the

interfacial surfaces. The subscript (k) indicates the bottom matrix subregion (subregion 5), and
(1) indicates the upper yarns lying on top of the matrix (i.e., subregion1a O£ x£ L, /2 and
subregion3at L, /2£ x£ L,). Figure7 (8) and (b) show that the interfacial normal stresses

from the lower and the upper subregion agree well with each other, with only one sublayer in the

thickness (2) direction. The normal stress continuity can be achieved well even without the stress
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Figure 7. Interfacial Normal and Shear Stress Distributions of RVE of Woven Composites with Two
Different Penalty Parameters for Stress Continuity Condition.

constraint condition (a, =0). It also shows a smooth transition of the stress distribution with a
significant change in the material propertiesat x =1L, /2.

Figure 7 (c) and (d) show that the interfacial shear stress continuity is achieved
fairly well with the present method, except the region near x =L, /2, where the high stress
gradient is observed. The reason for the high stress gradient in the local shear stresses is that the
local shear stresses (S, and S ) are highly affected by the global axial stresses(s, and s,) as

indicated in equation (4), and these axial stresses change abruptly with the change in the material
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properties at thisregion. The interfacial shear stresses do not match well at this region because

the thickness of subregion 3iszeroat x =L, /2. While two subregions (subregions 5 and 1) are

considered in calculating the interfacial stresses at the left sideof x =L, /2, three subregions
(subregions 5, 3 and 1) are considered in the calculation at the right side because of the zero

thickness of subregion 3. Therefore, the stress continuity condition becomes,
(1) atleftsideof x=L,/2,
BO =BY ad B = By (@6)
(2) atrightsideof x=1L,/2,

PS' =P =PY =P ad RS =PRY =P =RY (47)
where P® isthe local component of the interfacial stresses at the k-th subregion. However, it is
hard to satisfy such a continuity condition with the zero thickness because of the numerical error
in evaluating the stress components. The numerical error in the axial stresses, whose magnitudes
are much larger than those of the shear stresses, affects the interfacial shear stresses significantly,
so that jumps and mismatches are observed at this region.

Figure 7 (c) and (d) also show that the shear stress distribution is smoother
without the stress constraint condition (a, =0) than a, =100. Asobserved in the flat-
laminated case, the excessive stress continuity conditions are not necessary in the present mixed
method, and should be avoided at the stress singularity or the material mismatch. Not shown on
the figure are the results for a, >>a,, which make a little improvement in the stress continuity

but cause the displacement results to be unredistic and far different from the one in Figure 6 (a).
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1.3.3 Effective Elastic Moduli of Plain-Weave L aminates
Zhang and Harding [7] used a strain energy equivalency principle to predict the
elastic properties of a plain-weave composite. The finite element method was used to evaluate
the strain energies. They applied this method to a one-directional undulation model in the
loading direction only. Comparisons were made with experimental data for a plain-weave

carbon epoxy laminate [8]. Because of the one-dimensional model, discrepancies occurred for
the in-plane shear modulus ( C_sxy) and the properties in the transverse direction ( Ey and i ).

Naik and Ganesh [9] suggested two refined models, dice array model (SAM) and
element array model (EAM), and also suggested modifications of the existing simple models,
modified mosaic parallel model (MMPM) and modified Kabelka' s model (MKM). These
model s predicted two-dimensional elastic properties, considering the actual yarn cross-section
geometry, possible gap between two adjacent yarns, and undulation and continuity of yarns
along both warp and fill directions. The effective moduli are calculated by the various models
for plain-weave composites with E-glass/epoxy and carbon/epoxy materials.

Figure 8 (a) shows an RVE of the present model with the maximum yarn
thickness (a) and the wavelength of theyarn (I ), whoseratio (a/l ) represents the waviness
ratio. The overal volume fraction filled with yarn subregions in the RVE is approximately 0.64.
The moduli agree fairly well with both the experimental and the numerical results for various

waviness ratios, as shown in Figure 8. Not plotted in the figure, the present method can calculate

G,,, N, and N ,, asopposed to

yz? yz 1

three-dimensional moduli and Poisson’sratios, such as E,, G

Xz 1

the existing two-dimensional methods.
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Figure 8. Comparison of Numerical Prediction of Effective Elastic Moduli with Existing Results.

1.3.4 Failure Analysis of Model Laminated Composites

In situ damage observation is made with flat and model laminates containing one-
directiona yarn crimping [10]. Test specimens were loaded in tension in the x-direction (warp
direction) in a portable load frame placed on a microscopic stage. Laminates were made from
AS4/3501-6 graphite/epoxy unidirectional prepreg, whose properties are listed in Table 2 [11].
The present numerical prediction is compared with the experimental results for a cross-ply flat
laminate, [90/0]2s, and a model laminate, ([90./02]s, [02/902]s , 0.050). The notation used for the
model laminate indicates the |lamination sequence away from the wavy region, midsection
lamination sequence of the wavy region and the waviness ratio, respectively. The hygrothermal

conditionsof DT =-95°C and c=0.005 are used in the caculation.



Table 2

Three-Dimensional Properties of Unidirectional AS4/3501-6 Composite

Engineering Constants
Ex Ey E; n, n,, n, Gy, Gx Gy
[GPe] [GPe]
138 10 10 0.3 0.3 0.53 2.9 55 55
Strength Data [MP4]
Tension Compression Shear
X X! X1 X5 X; X: | Se Se | Sy
1930 52 52 1450 210 258 103 93 93

In both the flat and woven cases, the first-ply-failure (FPF) occurs at the 90° fill yarnsin the

form of transverse matrix cracking. In the flat laminate, the maximum stressoccursat y =L,

because of the singularity in s, at the free edge. The stress distribution in the y-direction is

calculated with the present method and compared with an analytic solution obtained by a method
suggested by Pagano [3], as Figure 9 shows. The figure clearly shows the singularity at the free

edge. Similar distribution is observed in the woven model laminates. Therefore, fine meshes are

required near the free edge for an accurate failure prediction.

Z 4

1.12
90°
1.08 0
90° l
o 1.04 - 3
o T T Y g
= Ly :
n N
= Om o m O
0.96 - Present N
Pagano [3]
092 T T T T 1
0 0.2 0.4 0.6 0.8

Figure 9. (')X Distribution in y-Direction at an Interface between Lower 0° and Lower 90° Ply.

31




In the model laminates, the calculated stress distribution in the x-direction shows
that the maximum stress occurs at the upper fill-yarn near the crimpingat x=0.57L,. The

calculated location agrees well with the in situ observation of the first matrix cracking, as Figure

10 shows.

First crack aty=0.54 Ly

Figure 10. Cross Section of Woven Model Laminate when the First Cracking is Observed [10].

A primitive progressive damage model is achieved by degrading transverse yarn
modulus with a matrix degradation factor of E_ =0.2. The last-ply-failure (LPF) occurs at the

0° warp yarns in the form of fiber breakage. The strengths at FPF and L PF are plotted in Figure
11 with fairly good agreement with the experiment. The Tsai-Wu quadratic failure criterion
provides more conservative and better results than the maximum stress criterion because the
former considers interactions between the stress components. However, the maximum stress

criterion is useful to identify the critical stress component for the damage mode prediction.

14 SUMMARY

Three-dimensional displacements and stresses are analyzed numerically based on
Reissner’s mixed variationa principle. The three-dimensional model is treated semi-two-
dimensionally by making an assumption on the interlaminar stress variations and integrating the

variational energy in the thickness direction. Additional energy terms are added to the
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Figure 11. Numerical Prediction of Strains at FPF and LPF. Total strain is a sum of mechanical and
residual strains.

variational energy to impose the displacement and stress continuity at the interface by the penalty
approach. Two penalty parameters are employed to enforce the displacement and the stress
continuity conditions, respectively. The Rayleigh-Ritz approximation with polynomial shape
functions yields a system of linear equations by taking derivatives of the variational energy
eguation with respect to the independent unknown variables.

The present method is applied to analyze flat laminated composites with a free edge and
the RVE of the plain-weave composites. The results are compared and validated with the

displacement-based FEA and/or analytic solution. Since the stresses are evaluated pointwise



without any interpolation of the displacement results, more accurate interlaminar stresses are
obtained at the interfaces between two different materials with few sublayers compared with the
displacement-based FEA.

The interfacial normal and shear stress continuity is achieved well with the penalty
approach, except in the region in which the thickness of the subregionsis small. It isfound that
the imposition of the displacement continuity condition is more important than that of the stress
continuity condition. Furthermore, the excessive continuity condition in the stressfields is not
necessary and may induce convergence instability in the data of the displacement as well as the
stress fields. Imposing only the displacement constraint without the stress constraint yields a
smoother interfacial normal and shear stress distribution than the case that considers both
constraint conditions.

The reliable stress calculation is used to predict the effective elastic moduli. The
numerical calculation with the present model of the RVE shows good agreement with previous
experimental and numerical results made for both flat and woven laminated composites with
various yarn-waviness ratios. Since the present method cal cul ates the three-dimensional elastic
moduli with three-dimensional geometry, it can be used not only for the 2-D but also for 3-D
woven composites.

Discrete damage analysis is achieved with the reliable prediction of the stress field with
the existing failure criteria. The failure analysis includes residual stress calculation to consider
hygrothermal effects. The damage analysis resultsin a good prediction of the magnitude and
location of the failure. A primitive progressive damage analysis is established by degrading the

material properties of the damaged yarns to predict the final failure beyond the FPF.



With the presence of stress singularity at the free edge, the numerical calculation
becomes mesh-dependent. Therefore, it is desirable to eliminate the singularity or reduce the
dominance of the singular stresses in order to study the effect of the yarn crimping on the failure
of the woven composites. Non-straight-edge specimens, such as a cruciform, can be used for this
purpose to make the most of the stresses carried not by the edges but by the middle of the

specimen.

15 CONCLUSIONSAND RECOMMENDATIONS

We have developed a three-dimensional model for the three-dimensional stress analysis
of woven fabric composites. The model yields an accurate three-dimensional displacement and
stress solution of woven fabric composites under any of the in-plane and the out-of-plane loading
conditions including, but not limited to, extension, bending and twisting. The model can obtain
the three-dimensional effective stiffness matrix for woven composites that a designer can plug
into for finite element structural analysis. The model can also make an accurate damage
prediction for woven composites through accurate in-plane and interlaminar stress calculations.

This present mixed formulation offers better accuracy at high stress gradients over the
current state-of-the-art displacement-based method. However, by introducing more variables,
this new method becomes resource-intensive in terms of computer memory and computational
time. A future effort will be made to develop a model based on the displacement-based method

to make the computation economical and efficient.
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2. ANALYTICAL CHARACTERIZATION OF GRAPHITIC FOAMS

INTRODUCTION

In recent years, there have been an increasing number of applications requiring

lightweight and more efficient thermal management, such as high-density electronics, hybrid

diesel-electric vehicles, communication satellites, and advanced aircraft. The primary concerns

in these thermal management applications are high thermal conductivity, low weight, low

coefficient of thermal expansion, high specific strength, and low cost [12]. Carbon foam was

shown to demonstrate numerous unique properties that make it an attractive material for use of

low-cost, lightweight, insulating, energy-absorbing structural components. Unique properties of

the carbon foam material include [13]:

@
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Precursors: coa extracts are inexpensive (less than $0.10 per kg) and readily available.
Manufacturing of the foam can be readily scaled up by continuous extrusion of constant
cross-section parts, or net-shape batch production of special shapes. Required
manufacturing equipment is commercially available; projected finished materia cost is
less than $14 per kg.

Low bulk thermal conductivity: less than 1.0 W/mK, but potential for high thermal
conductivity if the foam is converted to graphite through heat treatment at >2000°C.
Fire resistance: once carbonized at >1000°C, the foam does not contain a sufficient
volatile material with which to support combustion.

It will not give off noxious or hazardous fumes when heated.

Its properties can be readily engineered to meet different requirements. By varying the
processing conditions, the density, compressive strength, and ability to absorb energy can

be tailored to meet specific requirements.
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Integration with other materials. examples include impregnation with phenolic or other
resins, lamination with Kevlar tape, and lamination with a phenolic-resin skin. Attaching
fiber-reinforced polymer or metallic facesheets alows joining to other components by
more conventional methods, protects the foam from localizing damage or abrasive wear,
and transfers loads uniformly to the foam.

Machinability: easily cut, milled, turned, etc., with conventional equipment and tooling.
Formability: foam assumes shape of mold in batch operation and may be continuously
formed.

Joining: using a coke fusion process. This feature enables foams with different
mechanical, thermal or electrical conductivity properties to be joined to produce a highly
tailorable, anisotropic, sandwich material, as well as to alow repair to damaged
structures.

Impact absorption: carbon foam performs better than conventional polyurethane foams
that are currently used extensively for impact absorption in aircraft.

Additional improvement: additives such as chopped fibers, nanofibers or nanotubes, and
crushed calcined cokes can add significantly to the strength and tailorability of the foams;
unidirectional expansion of the foam and the orientation of fibers within the matrix

enable the production of anisotropic foams with directional properties.

The carbon foam macroscopically possesses an isotropic material property. However, a

microstructure of an open-cell foam possesses a pentagonal dodecahedron structure of the foam

ligaments oriented approximately 109.47° with each other. The microstructure of foams reflects

their method of preparation, which usualy involves a continuous liquid phase that eventually

solidifies. Surface tension and the elementary features of the liquid foam structure, which are
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required to minimize surface energy during the foaming process (i.e., bubble nucleation process),
results in three films that always meet at equal angles of 120° to form a film junction region
called a plateau border, and four plateau borders always join at the tetrahedral angle of

cos '(1/3) »109.47° [14,15].

Because of the tetrahedral cell microstructure, the macroscopic properties, such as foam
moduli and strengths, are critically influenced by the deformation characteristics of the cell
ligaments. Therefore, to develop a basic understanding of the performance of open-cell foam
materials, it is critical that the deformation and failure mechanism of the cell ligaments critically
be studied.

Preliminary research reveals that the graphitic alignment of the cell ligaments varies
along its longitudinal direction. Processing parameters, such as temperature, pressure, etc.,
determine the porosity and the graphitic alignment of the carbon foam, which in turn determine
its geometries and material properties. Once aresearch effort investigates appropriate
microstructural characterization techniques to correlate the foam microstructure with the
processing parameters, the foam microstructural geometry and the material properties, including
mechanical elastic moduli, Poisson’s ratio and thermal conductivity, etc., will be used for the
mechanical and thermal anaysis.

Because of denderness, each ligament can be considered as a beam, and the tetrahedral
cell microstructure with four ligaments as a frame structure. The four beams are located in three-
dimensiona space. The cross section of the beam varies in size and materia propertiesin the
longitudinal direction along the ligament. Because of the complex geometry and anisotropic
material properties, it is appropriate to perform the analysis numerically to obtain accurate

displacement and stress field solutions of foams. The numerical analysis will predict



longitudinal and transverse displacements as well as rotations, and calculate the reliable stress
and strain distributions along the beam ligaments that are connected and located in the three-

dimensional space and are deformed under arbitrary loading conditions.

2.2 PRELIMINARY ANALYSISOF FOAM MODEL
2.2.1 Generation of Unit Cell of Carbon Foam

Because of the randomness and complexity of the microstructure of the carbon
foam, it is difficult to consider every cell of the whole foam individually. Instead, an assumption
is made that one of the cells can represent a certain behavior of the whole foam structure. The
microstructural characterization of the representative cell ligaments will then be correlated with
the macroscopic bulk properties by a statistical approach. A series of databases will be collected
for various size and spatial orientation of the cell ligaments, as well as for the property variation
due to the graphic alignment along the longitudinal direction of the ligaments.

The first step in the structural analysis of the foam is to generate the geometry of
the unit cell of the foam systematically. The unit cell can be generated by manipulating
geometric entities, such as keypoints, lines, areas and volumes. The ANSY S package, a
commercialy available finite element package, is used to manipulate those entities by adding,
subtracting or merging methods.

The first step is to create a cube with dimensions of 2a” 2a” 2a inx-, y- and z
directions, as shown in Figure 12. The origin (point 1) is located in the center of the cube. The
second step is to select four corner points (e.g., points 3, 5, 6, 8 in Figure 12), which are located

diagonally with each other on the faces of the cube. Connecting the four corner points then

generates a tetrahedron, whose volume is V,,,, = 8/3xa°. This tetrahedron can be divided into

four subtetrahedra that contain the origin (1-3-8-5, 1-8-6-5, 1-5-6-3 and 1-3-8-6). Loca
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Figure 12. Keypoints and Lines for Generating a Unit Cell of Carbon Foam.

coordinate systems, whose x-directions are parallel to the longitudinal directions of the
ligaments, are defined by using four lines that connect the keypoints (1-3, 1-5, 1-6 and 1-8). The
local coordinate systems are useful because the anisotropic material properties, with
consideration of the graphitic alignment, are input easily by defining the longitudinal directions
of the ligaments.

The next step is to generate four spheres on the four corner points of the
tetrahedron. The spheres represent bubbles that are produced during the foaming process. The
radii of the spheres will determine the porosity of the unit cell of the foam. Figure 13 shows the
tetrahedron and the spheres.

The next step is to subtract the spheres from the tetrahedron by geometric

manipulation. The remaining mediais the unit cell of the foam. The volume of the unit cell
V. IS caculated automatically by the ANSYS. The porosity (f ) of the foam is thus calculated
by f =1- Vg Nraa - Figure 14 shows the unit cells with various porosities, and Figure 15

shows one of the ligaments of the unit cell of the foam at different view angles.



Figure 13. Tetrahedron and Spheres to Generate a Unit Cell of Carbon Foam.

@ f =10% (b) f =78% (© f =98%

Figure 14. Unit Cells of Carbon Foam with Various Porosities.

For numerical analysis, it is advantageous to partition the ligaments along the longitudinal direc-
tions because of the varying material properties due to the graphitic alignment. It is then assumed
that material properties change segment by segment. The number of partitions will determine the
accuracy of the analysis. The ligament partitioning can be easily generated by manipulating the
tetrahedra at the beginning step. The tetrahedra can be duplicated and contracted, leaving the origin
in the same location. The unit cell with the partitioned ligaments is then generated by following the
same steps as generating the spheres and subtracting them from the partitioned tetrahedra
geometrically, as Figure 16 shows. By setting mesh parameters for a desired refinement, and
running an automatic mesh routine of ANSY S, three-dimensional tetrahedral finite elements are

automatically generated as shown in Figure 17.
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Figure 15. A Ligament of a Unit Cell of Carbon Foam at Different View Angles.
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Figure 16. A Unit Cell of Carbon Foam Partitioned for Varying Material Properties Along Ligaments.

42



Carbon Fozm

Figure 17. Finite Element Meshes for Unit Cell of Carbon Foam.

222 FEA

For the FEA, appropriate loading and boundary conditions should be specified on
the unit cell of the foam. Under a certain loading condition, the carbon foam behaves according
to overall material properties, such as bulk modulus and Poisson’sratio. The overall material
properties can be assumed to be isotropic and can be measured experimentally, as suggested by
existing methods [16]. For the analysis of the unit cell, we need to understand the relationship
between the overal loading/boundary conditions (OBC) and the ligament boundary conditions
(LBC). The LBC varies depending on the location, size and orientation of the unit cell under a
certain OBC.

The LBC can be determined by the following bulk analysis. Thefirst stepisto
generate an imaginary cube inside which a unit cell of the foam is located, as depicted in Figure

18. Theimaginary cube can be generated by merging a cube and a unit cell geometrically by the



Figure 18. An Imaginary Cube Inside which a Unit Cell of the Foam is Located.

ANSYS. Overall loading and boundary conditions are then applied to the faces of the bulk cube.
For a uniform loading condition, one of the faces is fixed and the opposite side is |oaded,
whereas the other four faces are free to deform. Under the OBC, the bulk cube deforms
isotropically according to the bulk moduli and the Poisson’s ratio, and the FEA calculates the
deformations and stresses point by point. The LBC are then determined by the results on the
points that coincide with the unit cell of the foam. The second FEA is run by assigning the
recorded displacements to the unit cell asthe LBC.

The current method is used for the moduli back-calculation of the carbon foam.
Effective elastic moduli are calculated by solving six different cases under uniform axial and
shear strain loadings (€,). For each uniform-strain boundary condition, effective stresses (S’,)
are calculated by taking a volumetric average, as follows:

< - (‘)s (X, y, z) dxdydz

' v
Components of 6x6 effective stiffness matrix ([C_:I J. J) and effective compliance matrix ( [§, J. J) are

, (i=1--.6) (48)

then obtained by the following calculation:
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Finaly, the three-dimensional effective elastic moduli are calculated by the
following:
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The overall effective moduli of the foam are then calculated by repeating the above procedure
with various sizes and orientations of the unit cellsin the three-dimensional space. A statistical

approach can be used to handle a huge selection of random sizes and orientations.

23 SUMMARY

The emerging ultra-lightweight material, carbon foam, is modeled with the three-
dimensional microstructures to develop a basic understanding of the performance of open-cell
foam materials. The model will describe the deformation behavior accurately and will be used to

investigate the failure mechanism of the cell ligaments.



Because of the randomness and complexity of the microstructure of the carbon foam, the
representative cell ligaments are first characterized in detail at the microstructural level. The
microstructural characterization will then be correlated with the macroscopic bulk properties by a
statistical approach. A series of databases will be collected for various sizes and spatial
orientations of the cell ligaments, as well as the property variation due to the graphic alignment
along the longitudinal direction of the ligaments.

A computer program, “3D Foam,” will be developed to predict longitudinal and
transverse displacements as well as rotations, and calculate the reliable stress and strain
distributions along the ligaments. Because of slenderness, each ligament can be considered as a
beam, and the tetrahedral cell microstructure with four ligaments as a frame structure. The four
beams are located in three-dimensional space under arbitrary loading conditions. The cross
section of the beam varies in size and material properties in the longitudinal direction along the
ligament. A tool integrating the process model along with the micro- and macro-analysis of the

carbon foam will lead to an optimal process design to improve foam quality and to reduce cost.

24  CONCLUSIONSAND RECOMMENDATIONS

An analytic model was developed for the unit-cell of carbon foam utilizing variable
material properties and ligament cross-section geometry, which are consistent with an open-cell
foam. The model will be used to correlate the microstructural properties such as graphitic
alignment, porosity and ligament structure with bulk properties that are being measured by
mechanical tests. Experimental validation of the model has yet to be completed. The validation
effort will include measurement of bulk materials properties and observation of ligament

deformation using the miniature test fixture in the SEM.



3. MODEL DEVELOPMENT OF CARBON FOAM BLOWING PROCESS

31 LITERATURE REVIEW

Considerable literature research in theoretical and experimental areas was conducted on
polymer foam formation processes [17-22]. Polymer foam can be produced by awide variety of
processes. expandable beads, injection molding, and extrusion. However, al of these processes
have one basic phenomenon in common: the nucleation and subsequent nonisothermal growth
of bubbles upon sudden supersaturation of a solution consisting of a gas dissolved in the melt
polymer. Thisis similar to the carbon foam forming process. In the carbon foam blowing
process, a gas dissolves or is trapped in the pitch under high pressure. As the high pressure
releases, the bubbles in the supersaturated solution form, grow, and coalesce. The bubble walls
between cells open up, which results in forming the open cells [23]. The current models of
polymer foam processes are based on the following assumptions:
@ Nucleation

The nucleation in polymer foaming processes can be classified as two types:

homogeneous and heterogeneous. The classical nucleation is used to describe the

phenomena.
2 Foam bubble growth

(& Thebubbleis spherical.

(b) The gasinside the bubble follows the ideal gas law.

() The gas concentration varies only with the radial position of the sphere and time.

The relationship between the gas pressure in the bubble and the residual gas
concentration on the liquid layer surrounding the bubble follows Henry’s law.

(d) The melt polymer properties are independent of the gas concentration.
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() Because the processis so quick, it can be considered as an isothermal process.
(f) Theinertia effects are negligible.
(@ Themelt polymer is considered as a Newtonian fluid.

(3  Mold filling
In the mold filling process, the mass and momentum conservation equations are used to
simulate the process. As the thickness of afoam is usualy much smaller than the length
and width, the Hele-Shaw equation is often used to smplify the three-dimensiona flow.
As the bubbles grow, the foam volume increases (density of foam reducing) to fill the

mold cavity.

3.2 RESEARCH APPROACH

Initially, homogeneous nucleation will be assumed in the model. The classical nucleation
theory will be used in the model [24,25].

Most work in this research will focus on the bubble growth, because the bubble shape,
size and distribution determine the foam properties [25-29]. The current models in the polymer
foam process may be used for the initial bubble growth after modifying. However, they cannot
be used for the carbon foam process that is an open-cell foam forming process. After the bubbles
touch each other, the walls of the impinging bubble collapse. This forms the open-cell foam. In
the fluid mechanics theory, the determination of the cell structure is a free-surface problem. This
is quite a challenging topic because the location of the free surface is not known a priori, and the
shape of the free surface influences the flow through a complicated nonlinear boundary
condition, the normal-stress condition. When motion is steady or quasi-steady at a free surface
between liquid and gas, the boundary conditions are as follows. (&) no flow normal to the

surface, (b) no tangential stress on the surface if the surface tension gradients are negligible, and



(c) balancing of gas pressure, liquid pressure and normal viscous stress of the liquid with the
capillary pressure that is the product of the surface tension and mean curvature of the surface.
All iterative schemes employ asimilar strategy. First alocation of the free surface is chosen,
either by an informed guess or on the basis of the previous iterations. The governing equations
of mass and momentum are solved for the velocity and pressure fields in the liquid, but only two
of the three boundary conditions are satisfied. The residual in the third boundary condition is
used to decide how to alter the location of the free surface. The calculation process is repeated
until the calculation error is smaller than a criterion. This scheme is complex and time-
consuming because meshes have to be regenerated in the calculated domain at each calculation
step (one time step consists of many calculation steps), and convergence is often difficult to
obtain. On the other hand, the model used in polymer foam forming is much simpler than the
free-surface calculation. Although it may not be as accurate as the previous one, it can provide
basic information about the foam growth and process parameters. At this stage a ssimilar method
in polymer foam-forming is used after modification. At theinitial bubble growth, the

assumption of bubble spherical shape is acceptable, as the following calculation indicates:

dt 4m 2m
3
0
EaeﬂpgR :=4pR2DﬂC
dté 3 AT 4 Tri-g
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The initial and boundary conditions are as follows:
R(0)=R
Py(0)=Pg,i
c(r,0)=ci(r)
C(R,t)=KnPg(t)

C(¥, t)=co

where c is the concentration of the dissolved gas in melt pitch, D is the diffusion coefficient, R is
the radius of the bubble, r is the radial distance from the bubble center, A is the ideal gas
constant, Py is the gas pressure inside the bubble, P. is the pressure of the melt pitch, and s isthe
surface tension of the melt pitch.

After the bubbles touch and collapse, the equations above have to be modified. Asthe
spherical shape assumption is still used, R still is the radius of the assumed sphere, and the
bubble volume will be the segment of the assumed sphere. The gas diffusion area will be the
segment area.

The mold-filling process of the carbon foam may be considered as an isothermal process

because the process takes a very short time. The mass conservation equation is as follows:

ﬂr cel N —

R V) =0
wherer .4 IS the density of a cell that consists of the bubble and the melt pitch surrounding it.
If the mold thickness is smaller than its length and width, the Hagen-Poiseuille (H-P) equation

can be used. Combining the mass balance and H-P equation, a Poisson equation can be obtained.



A finite element code is being developed. Two element formats were selected:
tetrahedral and isoparametric. The tetrahedral element is used to connect the analysis to the
mechanica property of the foam. The isoparametric element will be used in the future. The

subroutines to calcul ate the coefficient matrix have been finished.

3.3 CONCLUSIONS

The model used in ssimulating the polymer foam process is modified to handle the open-
cell case in the carbon form process. Nucleation, bubble growth and mold-cavity-filling will be
included in the model. At this stage the spheretic bubble assumption is used. Severa

subroutines to calculate the coefficient matrix of FEA have been completed.

51



10.

11.

12.

REFERENCES

Roy, A. K. (1998). Three-Dimensional Mixed Variational Micromechanics Model for
Textile Composites. Proceedings of the AIAA SDM Conference.

Reissner, E. (1950). On a Variational Theorem in Elasticity. Journal of Mathematics
and Physics (90-95).

Pagano, N. J. (1978). Stress Fieldsin Composite Laminates. International Journal of
Solids and Structures 14 (385-400).

Harrison, P. E., & E. R. Johnson. (1996). A Mixed Variational Formulation for
Interlaminar Stresses in Thickness-Tapered Composite Laminates. International Journal
of Solids and Structures 33(16) (2377-2399).

Zienkiewicz, O. C., & R. L. Taylor. (1988). The Finite Element Method, 4™ edition, Vol.
1, McGraw-Hill International Editions.

Tsai, S. W. (1988). Composite Design, 4" edition, Think Composites, Dayton, Ohio.

Zhang, Y. C., & J. Harding. (1990). A Numerical Micromechanics Analysis of the
Mechanical Properties of aPlain Weave Composite. Computers and Structures 36(5)
(839-844).

Ishikawa, T., M. Matsushima, Y. Hayashi, & T.-W. Chou. (1985). Experimental
Confirmation of the Theory of Elastic Moduli of Fabric Composites. Journal of
Composite Materials 19 (443-458).

Naik, N. K., & V. K. Ganesh. (1992). Prediction of On-Axes Elastic Properties of Plain
Weave Fabric Composites. Composites Science and Technology 45 (135-152).

Roy, A. K. (1996). In Stu Damage Observation and Failure in Model Laminates
Containing Planar Y arn Crimping of Woven Composites. Mechanics of Composite
Materials and Sructures 3 (101-117).

Kim, R. Y., F. Abrams, & M. Knight. (1988). Mechanical Characterization of a Thick
Composite Laminate. Proceedings of the American Society for Composites, 3™
Technical Conference (25-29).

Klett, J., & B. Conway. (2000). Therma Management Solutions Utilizing High Thermal

Conductivity Graphite Foams. Proceedings of the 45" Int. SAMPE Symposium (1933-
1943).

52



13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

Rogers, D. K., J. Plucinski, P. G. Stansberry, A. H. Stiller, & J. W. Zondlo. (2000).
Low-Cost Carbon Foams for Thermal Protection and Reinforcement Applications.
Proceedings of the 45" Int. SAMPE Symposium (293-305).

Warren, W. E., & A. M. Kraynik. (1988). The Linear Elastic Properties of Open-Cell
Foams. Journal of Applied Mechanics 55 (341-346).

Bikerman, J. J. (1973). Foams. Springer-Verlag, New York. (pp. 33-64).

Roy, A. K., D. Pullman, & K. M. Kearns. (1998). Experimental Methods for Measuring
Tensile and Shear Stiffness and Strength of Graphitic Foam. Proceedings of the 43" Int.
SAMPE Symposium.

Amon, Moris, & Costel D. Denson. (1986). A Study of the Dynamics of Foam Growth:
Simplified Analysis and Experimental Results for Bulk Density in Structural Foam
Molding. Poly. Eng. & Sci. 26(3) (255-267).

Amon, Moris, & Costel D. Denson. (1984). A Study of the Dynamics of Foam Growth:
Analysis of the Growth of Closely Spaced Spherical Bubbles. Poly. Eng. & Sci. 24(13)
(1026-1034).

Arefmanesh, A., & S. G. Advani. (1992). Non-isotherma Bubble Growth in Polymeric
Foams. Cellular Polymers (ASME, MD-Vol. 38) (25-40).

Arefmanesh, A., S. G. Advani, & E. E. Michadlides. (1990). A Numerical Study of
Bubble Growth During Low Pressure Structural Foam Molding Process. Poly. Eng. &
Sci. 30(20) (1330-1338).

Clift, Roland, J. R. Grace, & M. E. Weber. (1978). Bubble, Drops, and Particles
Academic Press, Inc., New York, NY.

Patel, Rutton D. (1980). Bubble Growth in a Viscous Newtonian Liquid. Chemical Eng.
Science 35 (2356-2358).

Anderson, David P., Philip G. Wapner, & David B. Curliss. (1992). Physical Property
Characteristics of Pitch Materials. Mat. Res. Soc. Symp. Proc. 270 (59-64).

Colton, Jonathan S., & Nam P. Suh. (1987). Nucleation of Microcellular Foam: Theory
and Practice. Poly. Eng. & ci. 2(7) (500-503).

Ramesh, N. S., Don H. Rasmussen, & G. A. Campbell. (1994). The Heterogeneous
Nucleation of Microcellular Foams Assisted by the Survival of Microvoids in Polymers
Containing Low Glass Transition Particles, Part I1: Experimental Results and Discussion.
Poly. Eng. & Sci. 34(22) (1698-1706).



26.

27.

28.

29.

Shafi, M. A., K. Joshi, & R. W. Flumerfelt. (1997). Bubble Size Distributions in Freely
Expanded Polymer Foams. Chem. Eng. Sci. 52(4) (635-644).

Shafi, M. A., & R. W. Flumerfelt. (1997). Initial Bubble in Polymer Foam Processes.
Chem. Eng. Sci. 52(4) (627-633).

Street, James R., Arthur L. Fricke, & L. Philip Reiss. (1971). Dynamics of Phase
Growth in Viscous, Non-Newtonian Liquids. Ind. Eng. Chem. Fundam. 10(1) (54-64).

Wang, S. F., & A. A. Ogale. (1990). Structural Foam Molding: Modeling of Bubble-
Growth Process Resulting from Chemical Blowing Agents. Polym.-Plast. Technol. Eng.
29(4) (355-369).



LIST OF ACRONYMS

Acronym Description
EAM element array model
FEA finite element analysis
FPF first-ply-failure
H-P Hagen-Poiseuille
LBC ligament boundary conditions
LPF last-ply-failure
MKM modified Kabelka s model
MMPM modified mosaic parallel model
OBC overall loading/boundary conditions
RVE representative volume element
SAM dlice array model
SEM scanning electron microscope




